首页> 外文OA文献 >To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition
【2h】

To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition

机译:正面化还是不正面化:面部预处理研究   技术及其对识别的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Face recognition performance has improved remarkably in the last decade. Muchof this success can be attributed to the development of deep learningtechniques such as convolutional neural networks (CNNs). While CNNs have pushedthe state-of-the-art forward, their training process requires a large amount ofclean and correctly labelled training data. If a CNN is intended to toleratefacial pose, then we face an important question: should this training data bediverse in its pose distribution, or should face images be normalized to asingle pose in a pre-processing step? To address this question, we evaluate anumber of popular facial landmarking and pose correction algorithms tounderstand their effect on facial recognition performance. Additionally, weintroduce a new, automatic, single-image frontalization scheme that exceeds theperformance of current algorithms. CNNs trained using sets of differentpre-processing methods are used to extract features from the Point and ShootChallenge (PaSC) and CMU Multi-PIE datasets. We assert that the subsequentverification and recognition performance serves to quantify the effectivenessof each pose correction scheme.
机译:在过去十年中,人脸识别性能得到了显着改善。成功的大部分归功于深度学习技术的发展,例如卷积神经网络(CNN)。尽管CNN推动了最先进技术的发展,但它们的训练过程需要大量干净且正确标记的训练数据。如果CNN旨在容忍面部姿势,那么我们将面临一个重要问题:该训练数据的姿势分布是否应多样化,还是应该在预处理步骤中将面部图像标准化为单一姿势?为了解决这个问题,我们评估了许多流行的人脸标志和姿势校正算法,以了解它们对人脸识别性能的影响。此外,我们引入了一种新的,自动的单图像正面化方案,该方案超出了当前算法的性能。使用不同预处理方法集训练的CNN用于从Point and ShootChallenge(PaSC)和CMU Multi-PIE数据集中提取特征。我们断言,随后的验证和识别性能可量化每个姿势校正方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号